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Abstract. We introduce the spinor parallel propagator for maximally symmetric spaces in any
dimension. Then, the Dirac spinor Green functions in the maximally symmetric spaces R

n, Sn and
Hn are calculated in terms of intrinsic geometric objects. The results are covariant and coordinate
independent.

1. Introduction

The study of field theory in anti-de Sitter (AdS) spaces, which topologically are hyperbolic
maximally symmetric spaces, has been revived over the past two years following the so-called
Maldacena conjecture relating type IIB supergravity on AdS5 × S5 with N = 4, U(N) super-
Yang–Mills theory in four dimensions [1].

More than a decade ago, the calculation of correlation functions in maximally symmetric
spaces using only intrinsic geometric objects was presented in a series of papers starting with
[2–4]. In one of them [4], Green functions for two-component spinors in maximally symmetric
4-spaces were considered using the SL(2,R) formulation. To our knowledge, this analysis
has not been extended to Dirac spinors in other spacetime dimensions. However, it should
be mentioned that spinor Green functions in AdS spaces have recently been considered and
calculated by other means in the context of the AdS–CFT correspondence [5, 6].

Here, we present an intrinsically geometric approach to spinor Green functions in
maximally symmetric spaces. In section 2, we introduce the spinor parallel propagator for
maximally symmetric spaces of dimension n and find its covariant derivatives. Then, in
section 3, we calculate the spinor Green functions for the spaces R

n, Sn and Hn. Finally,
section 4 contains conclusions.

In the remainder of this section, we would like to review the elementary maximally
symmetric bi-tensors, which have been discussed in detail by Allen and Jacobson [3].

Consider a maximally symmetric space of dimension n with constant scalar curvature
n(n − 1)/R2. For the space Sn, the radius R is real and positive, whereas for the hyperbolic
space Hn, R = il with l positive, and in the flat case, R

n, R = ∞.
Consider further two points x and x ′, which can be connected uniquely by a shortest

geodesic. Letµ be the proper geodesic distance along this shortest geodesic between x and x ′.
We shall denote the covariant derivatives with respect to x and x ′ byDµ andDµ′ , respectively.
Then, the vectors

nν(x, x
′) = Dνµ(x, x ′) and nν ′(x, x ′) = Dν ′µ(x, x ′) (1)
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are tangent to the geodesic and have unit length. Furthermore, denote by gµν ′(x, x ′) the vector
parallel propagator along the geodesic. Note the relation nν

′ = −gν ′
µn
µ.

These elementary maximally bi-tensors nµ, nµ
′
and gµν ′ satisfy the following properties:

Dµnν = A(gµν − nµnν) (2a)

Dµ′nν = C(gµ′ν + nµ′nν) (2b)

Dµgνλ′ = −(A + C)(gµνnλ′ + gµλ′nν) (2c)

where A and C are functions of the geodesic distance µ and are given by

A = 1

R
cot
µ

R
and C = − 1

R sin(µ/R)
. (3)

Therefore, they satisfy the relations

dA/dµ = −C2 dC/dµ = −AC and C2 − A2 = 1/R2. (4)

The covariant derivative of spinors is defined in the usual sense using spin connections,

[Dµψ(x)]
α = ∂µψα(x) + 1

2ωµ
ab [Sabψ(x)]

α (5)

where Sab = 1
4 [γa, γb] are the usual spin matrices, and γa are the Dirac gamma matrices

of the local Lorentz frame, {γa, γb} = 2ηab. The covariant gamma matrices are defined by
�µ(x) = e

µ
a (x)γ

a , where e
µ
a (x) is a vielbein. Then, the covariant gamma matrices satisfy

{�µ, �ν} = 2gµν . Equation (5) was given only for completeness, as we shall only need the
covariant expressions.

2. Spinor parallel propagator

To start, consider a bi-spinor (x ′, x)α
′
β , which acts as a parallel propagator for Dirac spinors

in a maximally symmetric spacetime, i.e. it performs the parallel transport

" ′(x ′)α
′ =  (x ′, x)α

′
β"(x)

β.

The spinor parallel propagator  (x ′, x) can be uniquely defined for any spacetime
dimension by the following properties:

 (x ′, x) = [ (x, x ′)]−1 (6a)

�ν
′
(x ′) =  (x ′, x)�µ(x) (x, x ′)gν

′
µ(x

′, x) (6b)

nµDµ (x, x
′) = 0. (6c)

Equation (6a) implies that (x, x)α
′
β = δα′

β , whereas (6b) conveniently formulates the parallel
transport of the covariant gamma matrices. Finally, equation (6c) says that  (x, x ′) is
covariantly constant along the geodesic of parallel transport.

We would now like to evaluate a particular property of  (x, x ′), namely its covariant
derivative. Therefore, combine equations (6a) and (6b) to give

�ν (x, x ′) =  (x, x ′)�µ
′
gνµ′ (7)

and differentiate covariantly with respect to x to obtain

�νDλ (x, x
′) = Dλ (x, x ′)�µ

′
gνµ′ − (A + C) (x, x ′)�µ

′
(δνλnµ′ + gλµ′nν) (8)

where we have used the property (2c) of the vector parallel propagator. Now, use (7) for the
second term on the right-hand side of (8) and multiply by �λ, which yields

2Dν (x, x ′)− �νD/ (x, x ′) = D/ (x, x ′)�µ
′
gνµ′ + (A + C)(�ν�ρnρ − nnν) (x, x ′). (9)



Spinor propagators in maximally symmetric spaces 3023

Thus, multiplication by �ν leads to

(2 − n)D/ (x, x ′) = �νD/ (x, x ′)�µ
′
gνµ′

the solution of which is

D/ (x, x ′) = Bnµ�µ (x, x ′) (10)

where B is some function of the geodesic distance µ. Then, substituting (10) into (9) yields

2Dν (x, x ′) = 2Bnν (x, x ′) + (A + C)(�ν�ρnρ − nnν) (x, x ′).

Moreover, by multiplying this by nν and using (6c), one determines B to be

B = 1
2 (n− 1)(A + C).

Therefore, finally one obtains

Dµ (x, x
′) = 1

2 (A + C)
(
�µ�

νnν − nµ
)
 (x, x ′). (11)

For completeness, we also give the expression forDµ′ (x, x ′). It is easily obtained from
(11) using (6a) and is given by

Dµ′ (x, x ′) = − 1
2 (A + C) (x, x ′)

(
�µ′�ν

′
nν ′ − nµ′

)
. (12)

3. Spinor Green function

Using the spinor parallel propagator  (x, x ′) introduced in section 2, we would now like to
find the spinor Green function S(x, x ′) satisfying

[(D/ −m)S(x, x ′)]αβ ′ = δ(x − x ′)√
g(x)

δαβ ′ . (13)

Here, we have written the indices explicitly in order to emphasize that this is a bi-spinor
equation. Henceforth we shall omit the indices.

Now, we make the general ansatz

S(x, x ′) = [
α(µ) + β(µ)nν�

ν
]
 (x, x ′). (14)

We substitute the ansatz (14) into (13) and, after using (11), obtain the two coupled differential
equations

β ′ + 1
2 (n− 1)(A− C)β −mα = δ(x − x ′)√

g(x)
(15)

α′ + 1
2 (n− 1)(A + C)α −mβ = 0 (16)

where the prime denotes differentiation with respect to µ.
In order to proceed, multiply (15) by m and substitute mβ from (16). One finds

α′′ + (n− 1)Aα′ − 1
2 (n− 1)C(A + C)α −

[
(n− 1)2

4R2
+m2

]
α = mδ(x − x ′)√

g(x)
(17)

where (4) has been used. We shall solve (17) separately for the spaces R
n, Sn and Hn.
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3.1. Green function for R
n

For R
n, we have A = −C = 1/µ, R = ∞ and µ = |x − x ′|. Thus, equation (17) becomes

α′′ +
n− 1

µ
α′ −m2α = mδ(x − x ′). (18)

The solution of (18) is

α(µ) = −
(
m

2π

)n/2
µ1−n/2 Kn/2−1(mµ) (19)

where the functional form was obtained by solving (18) for µ 
= 0, and the constant was found
by matching the singularity. Furthermore, one finds from (16) mβ = α′, i.e. nνβ = ∂να/m,
so that the final result for the spinor Green function in R

n is

S(x, x ′) = − 1

m

(
m

2π

)n/2
(∂/ +m)µ1−n/2 Kn/2−1(mµ). (20)

Upon Fourier transforming it, one obtains the more familiar expression

S(x, x ′) = −(∂/ +m)
∫

dnk

(2π)n
e−ik(x−x ′) 1

k2 +m2
. (21)

3.2. Green function for Sn

In order to solve (17), we first consider x 
= x ′ and make the substitution

z = cos2 µ

2R
. (22)

This yields the differential equation[
z(1 − z) d2

dz2
+
n

2
(1 − 2z)

d

dz
− (n− 1)2

4
−m2R2 − n− 1

4z

]
α(z) = 0. (23)

Then, writing α(z) = √
z γ (z), one obtains a hypergeometric equation for γ ,

H(a, b; c; z)γ (z) = 0 (24a)

where

H(a, b; c; z) = z(1 − z) d2

dz2
+ [c − (a + b + 1)z]

d

dz
− ab (24b)

is the hypergeometric operator, and its parameters are

a = 1
2n− i|m|R b = 1

2n + i|m|R c = 1
2n + 1. (24c)

The solution of (24) that is singular at z = 1 is [7]

γ (z) = λF(a, b; c; z) = λF(n/2 − i|m|R, n/2 + i|m|R; n/2 + 1; z) (25)

where λ is a proportionality constant. Therefore, α(z) is

α(z) = λ√z F (n/2 − i|m|R, n/2 + i|m|R; n/2 + 1; z). (26)

We can now determine the constant λ by matching the singularity in (17). This is equivalent
to demanding the singularity of α at µ = 0 to have the same strength as in the case of R

n. One
finds from (26)

α → λ
�(n/2 + 1)�(n/2 − 1)

�(n/2 − i|m|R)�(n/2 + i|m|R)
(
µ

2R

)2−n
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whereas in R
n we have, from (19),

α → − 1
4m�(n/2 − 1)π−n/2µ2−n. (27)

Comparing these two expressions we find

λ = −m�(n/2 − i|m|R)�(n/2 + i|m|R)
�(n/2 + 1)πn/22n

R2−n. (28)

Finally, one can calculate β from (16), which yields

β(z) = − 1

m

[
1

R

√
z(1 − z) d

dz
+
n− 1

2R

√
1 − z
z

]
α(z)

= − λ

mR

√
1 − z[z F (n/2 + 1 − i|m|R, n/2 + 1 + i|m|R; n/2 + 2; z)

+ 1
2nF(n/2 − i|m|R, n/2 + i|m|R; n/2 + 1; z)]. (29)

It should be noted that β has a finite m→ 0 limit, whereas α vanishes.

3.3. Green function for Hn

For Hn, we can start with (24) and set R = il, i.e. we have to solve

H(a, b; c; z)γ (z) = 0 (30a)

with

a = 1
2n + |m|l b = 1

2n− |m|l c = 1
2n + 1. (30b)

There are two solutions to (30) which behave asymptotically like a power of z for z → ∞.
These are

γ±(z) = λ±z−(n/2±|m|l) F
(

1
2n± |m|l,±|m|l; 1 ± 2|m|l; 1

z

)
(31)

where λ± are constants. The choice of the minus sign is not always possible. In fact, for
1−2|m|l = 0,−1,−2, . . . the hypergeometric series is indeterminate. Thus, we shall include
the solution with the minus sign only, if |m|l < 1

2 . Hence, we have two solutions for α,

α±(z) = λ±z−[(n−1)/2±|m|l] F
(

1
2n± |m|l,±|m|l; 1 ± 2|m|l; 1

z

)
(32)

and we can now proceed to determine the constants λ± in a similar fashion to the Sn case.
From (32) we find for µ→ 0

α → λ±

(
µ

2l

)2−n
�(1 ± 2|m|l)�(n/2 − 1)

�(n/2 ± |m|l)�(±|m|l) .

Comparing this expression with the R
n case, equation (27), we find

λ± = ∓ sgnm 2−[n±2|m|l]l1−n �(n/2 ± |m|l)
π(n−1)/2�

(
1
2 ± |m|l) (33)

where the doubling formula for gamma functions has been used.
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Finally, let us calculate β from (16). Using a recursion formula for hypergeometric
functions we find

β±(z) = 1

m

[
1

l

√
z(z− 1)

d

dz
+
n− 1

2l

√
z− 1

z

]
α±(z)

= ∓ sgnmλ±
√
z− 1 z−(n/2±|m|l) F

(
1
2n± |m|l, 1 ± |m|l; 1 ± 2|m|l; 1

z

)
. (34)

It is interesting to note that in the limit m → 0 the functions β+ and β− become identical,
whereas α+ and α− do not, but differ in their signs. The reason is, of course, that, for
m = 0, equations (15) and (16) decouple, and α can be a solution of (16) with an arbitrary
proportionality constant. Moreover, form = 0, the common value of β± is a rational function
of z,

β±(z) = �(n/2)

(2π)n
l1−n(z− 1)−(n−1)/2.

4. Conclusions

We have introduced the spinor parallel propagator for maximally symmetric spaces in any
dimension. This enabled us to find expressions for the Dirac spinor Green functions in the
maximally symmetric spaces R

n, Sn andHn in terms of intrinsic geometric objects. Although
there are obstructions to the quantization of spinors in odd-dimensional manifolds with a
boundary [8], our results should be applicable to the AdS–CFT correspondence, because of
the classical dynamics in AdS space.
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